đặt A= 1+2+2^2+2^3+...+2^99+2^100
=>2A=2+22+23+...+2100+2101
=>2A-A=2+22+23+...+2100+2101-(1+2+22+23+...+299+2100)
=> A=2+22+23+...+2100+2101-1-2-22-23-...-299-2100
=2101-1
vậy 1+2+2^2+2^3+...+2^99+2^100=2101-1
Đặt A = 2 + 22 + 23 + ... + 22015
=> 2A = 22 + 23 + 24 + ... + 22016
=> 2A - A = ( 22 + 23 + 24 + ... + 22016 ) - ( 2 + 22 + 23 + ... + 22015 )
=> A = 22016 - 2
Vậy A = 22016 - 2
Đặt tổng đó là A = 2 + 22 + 23 + ... + 22015
2A = 22 + 23 + 24 + ... + 22016
2A - A = 22 + 23 + 24 +... + 22016 - 2 + 22 + 23 + ... + 22105
=> A = 22016 - 2
\(A=2+2^2+2^3+...+2^{2015}.\)
\(2A=2\left(2+2^2+2^3+...+2^{2015}\right)\)
\(2A=2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=2^{2016}-2\)
\(=>A=2^{2016}-2\)