Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:
$x^2-4-(2x-4)=0\Leftrightarrow x^2-2x=0\Leftrightarrow x=0$ hoặc $x=2$
Diện tích hình phẳng giới hạn bởi 2 ĐTHS là:
\(\int ^2_0|x^2-4-(2x-4)|dx=\int ^2_0|x^2-2x|dx=\int ^2_0(2x-x^2)dx=\frac{4}{3}\)
Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:
$x^2-4-(2x-4)=0\Leftrightarrow x^2-2x=0\Leftrightarrow x=0$ hoặc $x=2$
Diện tích hình phẳng giới hạn bởi 2 ĐTHS là:
\(\int ^2_0|x^2-4-(2x-4)|dx=\int ^2_0|x^2-2x|dx=\int ^2_0(2x-x^2)dx=\frac{4}{3}\)
Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = - x 2 + 4 và y=-x+2
A. 9/2
B.5/7
C.8/3
D. 9
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - x + 1 và đường thẳng y = x + 4 .
Tính diện tích hình phẳng được giới hạn bởi hai đồ thị hàm số y=2x^ 3 -3x^ 2 +1 và y = x ^ 3 - 4x ^ 2 + 2x + 1 .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 4 x - x 2 và y = x 3 - 4 .
Tính diện tích hình phẳng được giới hạn bởi hai đồ thị hàm số y = x2 + x; y = 2x.
A. 1 3
B. 1 6
C. 2 3
D. π 6
Tính diện tích hình phẳng giới hạn bởi : Đồ thị hàm số y = x 3 - 4x , trục hoành, đường thẳng x = 2 và đường thẳng x =4
A. 18
B. 24
C.32
D.36
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số x 3 - x và đồ thị hàm số y = x - x 2
A. 9 4
B. 37 12
C. 81 12
D. 13
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = 2 x - 1 2 , trục hoành và các đường thẳng x = 2 và x = 8.
A. 12 7
B. 9
C. 12
D. 10
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = 2 x - 1 2 , trục hoành, đường thẳng x = 2 và đường thẳng x = 3.
A. 3
B. 2
C. 1
D. 4