\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
Câu 1. Tính hợp lý giá trị các biểu thức sau :
a. A = ( 689 - 31 ) - ( 269 - 131 )
b. B = \(\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}+1\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}\right)-\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}+1\right)\)c. C = \(1-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
a)Tìm số tự nhiên n mà \(\frac{5}{n-1}\)là số nguyên
b) Tính M = \((1-\frac{1000}{2016})×\left(1-\frac{1001}{2016}\right)×\left(1-\frac{1002}{2016}\right)×\dots×\left(1-\frac{2017}{2016}\right)\)
Tính A=1+\(\frac{1}{2}+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
1. \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
So sánh \(B\) với \(\frac{1}{4}\)
2. SO sánh \(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\) và \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
Cho D=\(\left(1-\frac{2}{3}\right)\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{2}{2017}\right)2016\)
Tính giá trị biểu thức sau:
\(P=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2016}\left(1+2+...+2016\right)\)
thực hiện phép tính sau một cách nhanh nhất:
\(1\frac{5}{7}\cdot0.75-\frac{6}{7}\cdot1\frac{1}{3}+\frac{6}{7}\)
\(2017\cdot2018\left(\frac{2016}{2017}-\frac{2016}{2018}\right)\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)\)
\(\frac{1023}{2+2^2+2^3+....+2^{10}}\)GIÚP MÌNH VỚI!HELP ME!
\(A=-\frac{1}{2}\left(17,5-7,5\right)-\frac{2015}{2016}\left(2018-2\right)\)
=> \(A=-\frac{1}{2}\left(10\right)-\frac{2015}{2016}\left(2016\right)=-5-2015=-2020\)