Chọn C
Đặt u = x d v = d x cos 2 x ⇒ d u = d x v = tan x
∫ 0 π 4 x d x cos 2 x = x tan x | 0 π 4 - ∫ 0 π 4 tan x d x = π 4 - ∫ 0 π 4 sin x cos x d x = π 4 + ln cos x | 0 π 4 = π 4 + ln 2 2 - ln 1 = π 4 + ln 2 2
Chọn C
Đặt u = x d v = d x cos 2 x ⇒ d u = d x v = tan x
∫ 0 π 4 x d x cos 2 x = x tan x | 0 π 4 - ∫ 0 π 4 tan x d x = π 4 - ∫ 0 π 4 sin x cos x d x = π 4 + ln cos x | 0 π 4 = π 4 + ln 2 2 - ln 1 = π 4 + ln 2 2
Tập xác định D của hàm số y = [ l n ( x - 2 ) ] π là
Tập xác định của hàm số y = [ ln ( x - 2 ) ] π là
A. R
B. ( 3 ; + ∞ )
C. ( 0 ; + ∞ )
D. ( 2 ; + ∞ )
Tập xác định của hàm số y = ln ( x - 2 ) π là
A . ℝ
B . ( 3 ; + ∞ )
C . ( 0 ; + ∞ )
D . ( 2 ; + ∞ )
Diện tích của hình phẳng được giới hạn bởi các đường: y = tanx; y = 0; x = -π/4 và x = π/4 bằng:
A. π; B. -π;
C. ln2; D. 0
Diện tích của hình phẳng được giới hạn bởi các đường: y = tanx; y = 0; x = - π /4 và x = π /4 bằng:
A. π ; B. - π ;
C. ln2; D. 0
Cho khối trụ có bán kính đáy bằng a và thiết diện đi qua là một hình vuông. Thể tích khối trụ là:
A. 2 π a 3 B. 2 π a 3 /3
C. 4 π a 3 D. π a 3
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π /2 bằng:
A. 1; B. 2/7;
C. 2 π ; D. 2 π /3.
Một hình hộp chữ nhật có ba kích thước lần lượt là a, b, c. Gọi (S) là mặt cầu đi qua 8 đỉnh của hình hộp chữ nhật đó. Diện tích của mặt cầu (S) theo a, b, c là:
A. π ( a 2 + b 2 + c 2 ) B. 2 π ( a 2 + b 2 + c 2 )
C. 4 π ( a 2 + b 2 + c 2 ) D. π /2.( a 2 + b 2 + c 2 )
Trong các cặp hình phẳng giới hạn bởi các đường sau, cặp nào có diện tích bằng nhau?
a) {y = x + sinx, y = x với 0 ≤ x ≤ π } và {y = x + sinx, y = x với π ≤ x ≤ 2 π }
b) {y = sinx, y = 0 với 0 ≤ x ≤ π } và {y = cosx, y = 0 với 0 ≤ x ≤ π };
c) {y = x , y = x 2 }
và { y = 1 - x 2 , y = 1 − x}