Cho hình hộp chữ nhật A B C D . A , B , C , D , có tâm I. Gọi V , V 1 lần lượt là thể tích của khối hộp A B C D . A , B , C , D , và khối chóp I . A B C D Tính tỉ số k = V 1 V .
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=a, AD=b, A A ' = c . Tính thể tích V của khối chóp A.A'B'C'D'.
Một hình hộp chữ nhật có ba kích thước là a , b , c . Thể tích V của khối hộp chữ nhật đó bằng
A. a + c b
B. a b c
C. a + b c
D. 1 3 a b c
Cho hình chóp tam giác đều S.ABCD, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60. Tính thể tích V của hình chóp S.ABCD. A)a³✓3/2 B)a³✓3/6 C)a³✓3/12 D)a³✓3/24
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho SA' = SA/3. Mặt phẳng qua A' và song song với đáy của hình chóp cắt cạnh SB, SC, SD lần lượt tại B', C', D'. Thể tích hình chóp S.A'B'C'D' bằng:
A. V/3 B. V/9
C. V/27 D. V/81.
Một khối hộp chữ nhật (H) có các kích thước là a, b, c. Khối hộp chữ nhật (H') có các kích thước tương ứng lần lượt là a 2 , 2 b 3 , 3 c 4 . Khi đó tỉ số thể tích V ( H ' ) V ( H ) là?
A. 1 24
B. 1 12
C. 1 2
D. 1 4
Một hình hộp chữ nhật có kích thước a ( c m ) x b ( c m ) x c ( c m ) trong đó a, b, c là các số nguyên và 1 ≤ a ≤ b ≤ c . Gọi v ( c m 3 ) và s ( c m 2 ) lần lượt là thể tích và diện tích toàn phần của hình hộp. Biết V = s tìm số các bộ ba số ( a , b , c ) .
A. 4
B. 10
C. 12
D. 21
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, AA’ = c. Gọi M và N theo thứ tự là trung điểm của A’B’ và B’C’. Tính tỉ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’