\(\sqrt{2\cdot2^2+4^2+5^2}\)
\(=\sqrt{2\cdot4+16+25}\)
\(=\sqrt{8+16+25}\)
`=`\(\sqrt{49}\)
`=7`
\(\sqrt{2\cdot2^2+4^2+5^2}\)
\(=\sqrt{2\cdot4+16+25}\)
\(=\sqrt{8+16+25}\)
`=`\(\sqrt{49}\)
`=7`
1 Tìm x:
a) \(2.2^2.2^3...2^x=1024\) b) \(\frac{37-x}{x+13}=\frac{3}{7}\)
2. Tính :
\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}\)
Tính A= 2.2^2.2^3...2^10 nhân 5^2 +5^4 +...5^14 có tận cùng bằng bao nhiêu chữ số 0
Câu 1 :
a)Tính \(\left(\frac{2}{5}\right)^{2014}:\left(\frac{4}{25}\right)^{1007}\) \(3^{n+1}\): 9 \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}\)
b)Tìm x: .\(2.2^2.2^3...2^x=1024\) \(\frac{37-x}{x+13}=\frac{3}{7}\)
giúp mình rồi ai đúng mình tick nhe
Tính A=3/1^2.2^2 + 5/2^2.2^3 + 7/3^2.4^2 +....+ 19/9^2.10^2
o) \(\dfrac{\left(-1\right)^6.3^5.4^3}{9^2.2^5}\)
s) \(\dfrac{\dfrac{2}{7}+\dfrac{2}{5}+\dfrac{2}{17}-\dfrac{2}{25}}{\dfrac{3}{14}+\dfrac{3}{10}+\dfrac{3}{34}-\dfrac{3}{50}}\)
t) \(\sqrt{\dfrac{4}{9}}\) - \(\dfrac{1}{2}\): \(\left|\dfrac{-2}{3}\right|\)
Mg giải gấp giúp mình với
BT1: Tinh
\(1.A=\left(4-\frac{1}{2}+\frac{2}{3}\right)+\left(5+\frac{4}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{4}{5}\right)\)
\(2.B=\frac{\left(-1\right)^6.3^5.4^3}{9^2.2^5}\)
\(3.\frac{4}{5}.\frac{11}{3}-\frac{4}{5}.\frac{8}{3}+\frac{1}{5}\)
\(4.\sqrt{289-\sqrt{169+\sqrt{256-\sqrt{196}}}}\)
\(5.\frac{3^{15}.2^{18}.5^4}{6^{14}.10^5}\)
1. Tính : \(\left(\frac{2}{5}\right)^{2014}:\left(\frac{4}{25}\right)^{1007}\) \(3^{n+1}:9\) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{5}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}\)
2. Tìm x: \(2.2^2.2^3...2^x=1024\) \(\frac{37-x}{x+13}=\frac{3}{7}\)
Giúp mình nhé ai làm đúng thì mình tick và kb
Tính giá trị của A=2.22+3.33+4.44+5.55+...+20.2020
a, \(\left(-2\right)^3-\sqrt{0,36}-\text{|}-2,4\text{|}\)
b, \(\frac{48^2.8^5.100^9}{12^2.2^{15}.4^2}\)
Tính giá trị các biểu thức:
a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}\)
b) \(\left(\sqrt{4^2}+\sqrt{\left(-4\right)^2}\right).\sqrt{4^{-3}}-\sqrt{3^{-4}}\)