\(\sqrt{1234567654321}\) = 1111111
\(\sqrt{1+2+3+4+5+6+5+4+3+2+1}\)= 6
\(\sqrt{1234567654321=1111111}\)
\(\sqrt{1+2+3+4+5+6+5+4+3+2+1=6}\)
\(\sqrt{1234567654321}\) = 1111111
\(\sqrt{1+2+3+4+5+6+5+4+3+2+1}\)= 6
\(\sqrt{1234567654321=1111111}\)
\(\sqrt{1+2+3+4+5+6+5+4+3+2+1=6}\)
a,-12:(3/4-5/6)^2
,b,10.\(\sqrt{0.01}.\sqrt{\dfrac{16}{9}+3\sqrt{49}-\dfrac{1}{6}\sqrt{4}}\)
c,x/6=y/3=z/2 và x-2y+4z=8
d,|1/4+x|-1/3=2/5
a,3/2-5/6:(1/2)2+\(\sqrt{0,25-\sqrt{\dfrac{1}{4}}}\)
b,-4/3:2/9+13/12:-13/8
c,(-1/2)2-[-1/6:|-1+5|-\(\sqrt{64}.\left(\dfrac{1}{4}\right)^2\)
d,15^11.5^7.9^2/5^18.27^6
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
BT1: Tinh
\(1.A=\left(4-\frac{1}{2}+\frac{2}{3}\right)+\left(5+\frac{4}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{4}{5}\right)\)
\(2.B=\frac{\left(-1\right)^6.3^5.4^3}{9^2.2^5}\)
\(3.\frac{4}{5}.\frac{11}{3}-\frac{4}{5}.\frac{8}{3}+\frac{1}{5}\)
\(4.\sqrt{289-\sqrt{169+\sqrt{256-\sqrt{196}}}}\)
\(5.\frac{3^{15}.2^{18}.5^4}{6^{14}.10^5}\)
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
Thực hiện phép tính (Tính hợp lý nếu có thể)
g) \(\frac{3}{5}:\left(\frac{-1}{15}-\frac{1}{6}\right)+\frac{3}{5}:\left(\frac{-1}{3}-1\frac{1}{15}\right)\)
h) \(10.\sqrt{0,01}.\sqrt{\frac{16}{9}+3\sqrt{49}-\frac{1}{6}\sqrt{4}}\)
i) \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}\)
k) \((2\frac{1}{3}+3\frac{1}{2}):\left(-4\frac{1}{6}+3\frac{1}{7}\right)+7\frac{1}{2}\)
n) \(4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)
m) \([1,5+2\frac{1}{2}-\left(2\sqrt{2}\right)^2]:[4\frac{1}{2}-\sqrt{1,96}+0,9]\)
o) \(\frac{5}{21}.\left(4\frac{1}{5}.7\frac{3}{4}+5\frac{1}{4}.4,2\right)\)
p) \(\left(\frac{2}{5}+\frac{2}{7}-\frac{2}{11}\right):\left(\frac{3}{7}-\frac{3}{11}+\frac{3}{5}\right)\)
Làm nhanh làm đúng mình Tick nha :))
tính
a,\(\sqrt{49}-\sqrt{\left(-5\right)^2}-5\sqrt{1,44}+3\sqrt{\frac{4}{9}}\)
b, \(\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2+\left(4.\sqrt{0,5}\right)^2-\left(\frac{1}{5}\sqrt{125}\right)^3\)
c, \(\left(2^{-1}+3^{-1}\right).\left(2^{-1}-2^{-1}\right).\left(2^{-1}.2^0\right)^{-4}:2^3\)
C = \(25.\left(-\frac{1}{3}\right)^3+\frac{1}{5}-2.\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)
D = \(\left(-2\right)^3.\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
E = \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
F =\(\left(-\frac{3}{2}\right)+|-\frac{5}{6}|-1\frac{1}{2}:6\)
G = \(\frac{0,5+0,\left(3\right)-0,1\left(6\right)}{2,5+1,\left(6\right)-0,8\left(3\right)}\)