tính tổng : S=\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2011}\)
TÍNH : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}}\)
Tính P:
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Tính P=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Tính \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Tính ; A =1+\(\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2011}\left(1+2+3+...+2011\right)\)
a)A=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
b)A =\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\)và B = \(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{3}{2016}\)
Tính \(\frac{B}{A}\)
tính tổng:
\(S=1+\frac{1}{1+2}+\frac{1}{1+2+3}+............+\frac{1}{1+2+3+.....+2011}\)
giải chi tiết nhé ! rồi mình tick cho 3 cái
Tính :
\(\frac{1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2011}+\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}+..............+\frac{4023}{2011}+\frac{4024}{2012}}-2012\)