Tính Q=\(\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+.....+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+......+\frac{1002.1004}{2005.2007}\)
Tính: \(Q=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)
Tính : Q = \(\frac{1.3}{3.5}\)+ \(\frac{2.4}{5.7}\)+\(\frac{3.5}{7.9}\)+.....+\(\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)+......+\(\frac{1002.1004}{2005.2007}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
a)Tìm số nguyên dương n thỏa mãn:
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)=\frac{2013}{2014}\)
b)tìm a sao cho
\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)=11.a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
Tính A=\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{99.101}\right)\)
Tính:
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)
Tính:
C=\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)
Tính:
\(B=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2016.2018}\right)\)