Tính P= (1-1/(1+2)). (1-1/(1+2+3).....(1-1/(1+2+3+...+2011) = 0
Tính P= (1-1/(1+2)). (1-1/(1+2+3).....(1-1/(1+2+3+...+2011) = 0
Cho A=1/2+1/3+1/4+...+1/2011+1/2012
B=2011/1+2010/2+2009/3+...+2/2010+1/2011
Tính A/B
Tính ; A =1+\(\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2011}\left(1+2+3+...+2011\right)\)
Tính: C=(1/2+1/3+1/4+....+1/2012)/(2011/1+2010/2+.....+1/2011)
Thực hiện phép tính (1/2+1/3+1/4+1/5+1/6+...+1/2012)/(2011/1+2010/2+2009/3+...+1/2011)
Tính: C=(1/2+1/3+1/4+....+1/2012)/(2011/1+2010/2+.....+1/2011)
tính:
P=(1/2+1/3+1/4+....+1/2012):(2011/1+2010/2+2009/3+...+1/2011)
thực hiện phép tính:
P=(1-1/1+2).(1/1+2+3)....(1/1+1+2+3+..+2011)
tính S=\(1+\frac{1}{2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2011}\)
tính tổng : S=\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2011}\)