\(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{99.101.103}\)
=\(\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{99.101.103}\right)\)
=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{99.101}-\frac{1}{101.103}\right)\)
=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{101.103}\right)\)
=\(\frac{1}{4}.\frac{10406}{31209}\)
=\(\frac{5230}{62418}\)
Ta có: 1/1.3.5 = (1/1.3 - 1/3.5).1/4
1/3.5.7 = (1/3.5 - 1/5.7).1/4
\(\Rightarrow\) 1/1.3.5 + 1/3.5.7 + 1/5.7.9 + ... + 1/99.101.103 = 1/4.(1/1.3 - 1/3.5 + 1/3.5 - 1/5.7 + ... + 1/99.101 - 1/101.103)
= 1/4.(1/3 - 1/10403)
= 2600/31209
Tớ nghĩ vậy, nếu đúng thì cho mk biết nha