= \(\frac{12}{15}\) +\(\frac{12}{35}\)+\(\frac{12}{63}\)+\(\frac{12}{99}\)
= 12 x (\(\frac{1}{15}\)+\(\frac{1}{35}\)+\(\frac{1}{63}\)+\(\frac{1}{99}\))
= 12 x ( \(\frac{1}{3x5}\)+\(\frac{1}{5x7}\)+\(\frac{1}{7x9}\)+\(\frac{1}{9x11}\))
= 12 x \(\frac{1}{2}\) x ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{11}\))
= 6 x ( \(\frac{1}{3}\) - \(\frac{1}{11}\))
= 6 x \(\frac{8}{33}\)
= \(\frac{48}{33}\)=\(\frac{16}{11}\)
Nhớ tk nha
\(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
\(=1212.\left(\frac{1}{15.101}+\frac{1}{35.101}+\frac{1}{63.101}+\frac{1}{99.101}\right)\)
\(=12.101.\frac{1}{101}.\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=6.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=6.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=6.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=6.\left(\frac{11}{33}-\frac{3}{33}\right)\)
\(=6.\frac{8}{33}\)
\(=\frac{16}{11}\)