Ta có:
\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right).....\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.-2.-3......-2002}{2.3.4.....2003}=\frac{1}{2003}\)
\(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot......\cdot\left(\frac{1}{2003}-1\right)\)
=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.........\cdot\frac{2002}{2003}\) = \(\frac{1}{2003}\)