\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1000\cdot1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}\)
\(=\frac{1000}{1001}\)
1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+.............+\(\frac{1}{1000}\)-\(\frac{1}{1001}\)=1-\(\frac{1}{1001}\)=\(\frac{1000}{1001}\)
=1/1-1/2+1/2-1/3+.....+1/1000-1/1001
=1/1+(-1/2+1/2)+(-1/3+1/3)+.......+(-1/1001+1/1001)-1/1001
=1-1/1001
=1000/1001
NÈ BẠN DẤU / LÀ ĐẤU PHẦN NHA