\(A=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{95.100}\)
\(\Rightarrow\)\(5A=1+\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)
\(=1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(=1+\frac{1}{5}-\frac{1}{100}=\frac{119}{100}\)
\(\Rightarrow\)\(A=\frac{119}{500}\)
A=1/1.5+1/5.10+....+1/95.100
=(5/1.5+5/5.10+...+5/95.100):5
=(1-1/5+1/5-1/10+...+1/95-1/100):5
=(1-1/100):5
=99/100:5
=99/500
A=1-1/5+1/5-1/10+...+1/95-1/100
A=1-1/100=99/100
KO CHẮC NHƯNG NHỚ K NHÉ BN
\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+....+\frac{1}{90\cdot95}+\frac{1}{95\cdot100}\)
\(A=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{5}\cdot\frac{99}{100}\)
\(A=\frac{99}{500}\)
Vậy ......
\(A=\frac{1}{5}+\frac{1}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=\frac{1}{5}+\frac{1}{5}.\frac{19}{100}\)
\(=\frac{119}{500}\)
\(A=\frac{1}{1.5}+\frac{1}{5.10}+...+\frac{1}{95.100}\)
\(=\frac{1}{5}+\frac{1}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(1-\frac{1}{10}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{1}{5}+\frac{1}{5}\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{5}+\frac{1}{5}.\frac{99}{100}\)
\(=\frac{1}{5}\left(1+\frac{99}{100}\right)\)
\(=\frac{1}{5}.\frac{199}{100}=\frac{199}{500}\)