a) Áp dụng hằng đẳng thức ta đc:
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+...+3\)
\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)
a) Áp dụng hằng đẳng thức ta đc:
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+...+3\)
\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)
b) mk nghĩ bước đầu tiên là phải bỏ ngoặc:
\(=20^2+18^2+16^2+...4^2+2^2-19^2-17^2-....-3^2-1^2\)
\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(4^2-3^2\right)-1^2\)
\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(4-3\right)\left(4+3\right)-1\)
\(=\left(39+35+31+...+7\right)-1\)
\(=\left(\left[\left(39-7\right):4+1\right]\cdot\left(39+7\right):2\right)-1=207-1=206\)