Đặt \(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{1}{78}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{12.13}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{12}-\dfrac{1}{13}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{13}\)\(=\dfrac{11}{26}\)
⇒\(A=\dfrac{11}{26}:\dfrac{1}{2}\)
⇒\(A=\dfrac{11}{13}\)