Ta có:
12 - 22 + 32 - 42 + ... + 20032 - 20042 + 20052
= 12 + (-22 + 32) + (-42 + 52) + ... + (-20022 + 20032) +(-20042 + 20052)
= 1 + (32 - 22) + (52 - 42) + ... + (20032 - 20022) + (20052 - 20042)
= 1 + (3 + 2)(3 - 2) + (5 + 4)(5 - 4) + .... + (2003 + 2002)(2003 - 2002) + (2005 + 2004)(2005 - 2004)
= 1 + 5.1 + 9.1 + .... + 4005 . 1 + 4009 . 1
= 1 + (5 + 9 + .... + 4005 + 4009)
= 1 + (4009 + 5)[(4009 - 5) : 4 + 1] : 2
= 1 + 4014 . 1002 : 2
= 1 + 2011014
= 2011015
\(-\left(2^2-1^2+4^2-3^2+...+2005^2-2004^2\right)\)
\(=-\left(\left(2-1\right)\left(1+2\right)+...+\left(2005-2004\right)\left(2004+2005\right)\right)\)
\(=-\left(1+2+3+...+2004+2005\right)\)
\(=-\frac{2005\left(2005+1\right)}{2}=-2011015\)