\(B=1+\frac{3}{5}+\frac{3}{35}+\frac{3}{55}+.....+\frac{3}{9999}\)
\(B=\frac{3}{1}.3+\frac{3}{3}.5+\frac{3}{5}.7+......+\frac{3}{99}.101\)
\(B=\frac{3}{2}\left(\frac{2}{1}.3+\frac{2}{3}.5+.......+\frac{3}{99}.101\right)\)
\(B=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(B=\frac{3}{2}.\frac{100}{101}\)
\(B=\frac{150}{101}\)