\(M=\frac{1}{2}\times\frac{2}{3}\times...\times\frac{98}{99}\)
\(M=\frac{1\times2\times...\times98}{2\times3\times...\times99}\)
\(M=\frac{1}{99}\)
\(M=\frac{1}{2}\times\frac{2}{3}\times...\times\frac{98}{99}\)
\(M=\frac{1\times2\times...\times98}{2\times3\times...\times99}\)
\(M=\frac{1}{99}\)
Tính nhanh
a, \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
b, \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
\(H=\frac{\left(1+97\right)\left(1+\frac{97}{2}\right)\left(1+\frac{97}{3}\right)\left(1+\frac{97}{4}\right)+...+\left(1+\frac{97}{99}\right)}{\left(1+99\right)\left(1+\frac{99}{2}\right)\left(1+\frac{99}{3}\right)\left(1+\frac{99}{4}\right)+...+\left(1+\frac{99}{97}\right)}\)
bài 1 : tính
1) A = \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)........\left(\frac{1}{99}+1\right)\)
2) B = \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right).....\left(\frac{1}{99}-1\right)\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
tính nhanh
a, \(\frac{-2}{5}\cdot\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{2}{5}\cdot\frac{2}{17}+\frac{-2}{5}\)
b, \(\frac{1}{5}\cdot\left(\frac{4}{13}-\frac{9}{11}\right)+\frac{1}{3}\left(\frac{9}{13}-\frac{4}{22}\right)\)
c, \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
d, \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
Tính nhanh :
A = \(\left(\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}\right)\cdot\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{98}{99}\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\cdot\left(\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}\right)\)
Tính nhanh :
\(A=\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{51}-\frac{3}{11}\right)\)
\(B=\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}......\frac{99^2}{99.100}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{100}\right)\)
\(\left(\frac{1}{7}+\frac{1}{23}+\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
đề bài tính nhanh
Tính:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)