\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tính : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
Tính nhanh:
B=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+....+\(\frac{1}{99.100}\)
Tính
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
NHANH NHÁ CÁC BẠN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=?\)
Tính nhanh ( làm giùm nka mik like cho hjhj)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(B=\frac{1}{99.100}-\frac{1}{98.99}-\frac{1}{97.98}-...-\frac{1}{1.2}\)
Tính nhanhB=\(-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-.....-\frac{1}{98.99}-\frac{1}{99.100}\)
Giups mình với mình đang cần gấp ai nhanh nhất tớ sẽ tích cho bạn đó có kèm cách làm nhé
Tính \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
giải giúp mình nha
chứng minh:\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)