\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-....-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\frac{98}{99}\)
=\(\frac{-97}{99}\)