Lời giải:
$3^6-M=3^0+3^1+3^2+3^3+3^4+3^5$
$3(3^6-M)=3^1+3^2+3^3+3^4+3^5+3^6$
$\Rightarrow 3(3^6-M)-(3^6-M)=3^6-3^0$
$\Rightarrow 2(3^6-M)=3^6-1$
$\Rightarrow 2M = 2.3^6-(3^6-1)=3^6+1$
$\Rightarrow M=\frac{3^6+1}{2}$
M=36-(35+34+...+31+30)
Đặt A=35+34+...+31+30
3A=36+35+...+32+31
3A-A=36+35+...+32+31-35-34-...-31-30
2A=36-30=>A=\(\dfrac{3^6-3^0}{2}\)
Thay A vào M ta có:
M=36-\(\dfrac{3^6-3^0}{2}\)
M=\(\dfrac{2.3^6}{2}\)-\(\dfrac{3^6-3^0}{2}\)
M=\(\dfrac{3^6.\left(2-1\right)-1}{2}\)
M=\(\dfrac{3^6.1-1}{2}\)
M=\(\dfrac{3^6-1}{2}\)
M=364