1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Thuc hien phep tinh
e)\(\left(\frac{2}{3}-\frac{-2}{7}-\frac{1}{14}\right):\left(-1-\frac{3}{7}+\frac{3}{28}\right)\)
f) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
tinh
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)
Tính giá trị của biểu thức:
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(S=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)\)
\(D=\left(1-\frac{1}{17}\right)\left(1-\frac{2}{17}\right)\left(1-\frac{3}{17}\right)...\left(1-\frac{27}{17}\right)\)
A=\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)....\left(\frac{1}{99}+1\right)\)
b) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
Tính nhanh
a, \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
b, \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)\)
1 . Tinh : a , \(\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{14}\right).....\left(1-\frac{1}{5050}\right)\)b,\(\frac{^{2^{19}}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)c,\(\frac{18.\frac{19}{2}.\frac{20}{3}.\frac{21}{4}.....\frac{36}{19}}{20.\frac{21}{2}.\frac{22}{3}.....\frac{36}{17}}\)giup mjk nha mjk tjk cho
Tính:
\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)
Câu 1: Tính
a) A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
b) B=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)
c) C=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^4}\)