Chứng minh:\(\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\left(nEN\cdot\right)\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính Sn biết \(S_n=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Tính S=\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{n}\left(1+2+...+n\right)\)
tính giá trị biểu thức sau
\(A=\left(1-\frac{1}{^{2^2}}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{n^2}\right)\)
Chứng minh:\(\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
n thuộc n sao
chứng minh:\(\left(1-\frac{2}{6}\right).\left(1-\frac{2}{12}\right).\left(1-\frac{2}{20}\right)...\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}nENsao\)
Chứng minh : ( n thuộc N*)
\(\left(1-\frac{2}{6}\right)x\left(1-\frac{2}{12}\right)x\left(1-\frac{2}{20}\right)x...x\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
Tính S = \(1+\frac{1}{2}\times\left(1+2\right)+\frac{1}{3}\times\left(1+2+3\right)+...+\frac{1}{n}\times\left(1+2+3+4+...+n\right)\)