Ta có : \(\left|\left|3x-2\right|-1\right|>4\)
\(\Leftrightarrow\left[{}\begin{matrix}-1+\left|3x-2\right|>4\\-1+\left|3x-2\right|< -4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|3x-2\right|>5\\\left|3x-2\right|< -3\left(VL\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|3x-2\right|>5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2>5\\3x-2< -5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{7}{3}\\x< -1\end{matrix}\right.\)
Vậy. ....
TH1: `-1+|3x-2| >=0 <=> |3x-2| >=1`
TH1.1: `3x-2>=0 <=> x >= 2/3`
`-1+3x-2>4`
`<=>3x>7`
`<=>x>7/3`
Vậy `x>7/3`
TH1.2: `3x-2<0 <=> x <3/2`
`-1-3x+2>4`
`<=> -3x>3`
`<=>x<-1`
Vậy `x<-1`
TH2: `-1+|3x-2|<0 <=> |3x-2|<1`
TH2.1: `3x-2>=0 <=> x >= 2/3`
`1-3x+2>4`
`<=>-3x>1`
`<=>x<-1/3`
`=>` VN.
TH2.2: `3x-2<0 <=> x<2/3`
`1+3x-2>4`
`<=>2x>5`
`<=>x>5/2`
`=>` VN.
Vậy `S=(-∞ ; -1) \vee (7/3 ; + ∞)`.