\(d\left(M;3y+7\right)=\dfrac{\left|0.2+3.5+7\right|}{\sqrt{9}}=\dfrac{22}{3}\)
\(d\left(M;3y+7\right)=\dfrac{\left|0.2+3.5+7\right|}{\sqrt{9}}=\dfrac{22}{3}\)
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x - 4y + 5 = 0 và d2: mx + 3y - 3 = 0. Giá trị của m để khoảng cách từ A đến d1 gấp hai lần khoảng cách từ A đến đường thẳng d2 là:
A. m = ± 1
B. m = ± 15 3
C. m = ± 4
D. m = ± 15 5
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0. Giá trị của m để khoảng cách từ A đến hai đường thẳng bằng nhau là:
A. m = ± 1
B. m = 1 và m = 4
C. m = ± 4
D. m =- 1 và m = 4
Trong mặt phẳng Oxy, cho đường tròn (C): x²+y² -2x +4y=0 và đường thẳng delta: x+2y+7=0. Tìm tọa độ điểm M€(C) sao cho khoảng cách từ điểm M đến đường thẳng delta lớn nhất.
Tính khoảng cách từ các điểm M(-2; 1) và O(0; 0) đến đường thẳng Δ có phương trình 3x – 2y - 1 = 0.
Tam giác ABC có AB:2x+y-5=0, AC:x-3y+1=0. Tính khoảng cách từ điểm A tới đường thẳng 7x-8y+26=0
Cho điểm A(7; 4) và đường thẳng ∆: 3x – 4y + 8 = 0. Khoảng cách từ A đến đường thẳng ∆ là
A.2
B.3/5
C.13/5
D.3/2
Tìm khoảng cách từ một điểm đến đường thẳng trong các trường hợp sau:
a, A(3; 5) và Δ : 4x + 3y +1 = 0
b, B(1; -2) và d: 3x – 4y -26 = 0
c, C(1; 2) và m: 3x + 4y -11 = 0
1) Tính khoảng cách từ điểm M đến đường thẳng d, với:
M(3,5); (d): x + y + 1 =0
M(2,3); (d): {x-2t, y = 2 + 3t
M(2,-3); (d): (x - 2)/2 = ( y + 1)/3
2) Viết phưởng trình đường thẳng d song song với đường thẳng △: 2x - y +3 =0 và cách △ một khoảng bằng căn 5
Khoảng cách từ điểm M( 2; 3) đến đường thẳng ∆: 3x- 4y+ 1= 0 là:
A. 1
B.2
C. 1/2
D. 3