Ta có (α)//(β)
Lấy M (8;0;0) ∈ (β)
d((α),(β)) = d(M,(α)) = 8 - 2 1 2 = 6
Ta có (α)//(β)
Lấy M (8;0;0) ∈ (β)
d((α),(β)) = d(M,(α)) = 8 - 2 1 2 = 6
Cho hai mặt phẳng α : 2 x + 3 y - 2 + 2 = 0 ; β : 2 x + 2 y - z + 16 = 0 . Khoảng cách giữa hai mặt phẳng α và β là
Cho hai mặt phẳng (α) và (β) có phương trình
(α): x - 2y + 3z + 1 = 0
(β): 2x – 4y + 6z + 1 = 0.
Có nhận xét gì về vecto pháp tuyến của chúng ?
Trong không gian Oxyz, khoảng cách giữa mặt phẳng α : 2x+4y+4z+1=0 và mặt phẳng β : x+2y+2z+2=0 bằng
A. 3 2
B. 1 3
C. 1 2
D. 1
Cho hai mặt phẳng α : 3 x - 2 y + 2 z + 7 = 0 , β : 5 x - 4 y + 3 z + 1 = 0 . Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả α và β là:
A. 2x - y - 2z =0
B. 2x - y + 2z =0
C. 2x + y - 2z + 1=0
D. 2x + y - 2z = 0
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0 Chứng minh rằng (α) cắt ( β)
Lập phương trình mặt phẳng ( α ) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng ( β ): x + 2y – z = 0 .
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Viết phương trình tham số của đường thẳng d là giao của (α) và ( β)
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): x+2y-z-1=0 và (β): 2x+4y-mz-2=0. Tìm m để hai mặt phẳng (α) và (β) song song với nhau.
A. m=1
B. Không tồn tại m
C. m=-2
D. m=2.
Cho mặt phẳng ( α ) : 4 x + y + 2 z + 1 = 0 và ( β ) : 2 x - 2 y + z - 3 = 0 . Viết phương trình tham số của đường thẳng d là giao của α và β