Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050
do 5050 là số chẵn => A=1
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050
do 5050 là số chẵn => A=1
so sánh :
a.3^300 +4^300 và 3.24^100
b.(20^2006 + 11^2006)^2007 và (20^2007 +11^2007)^2006
c.(1/2^2-1).(1/3^2-1).(1/4^2-1)..........(1/1000^2-1) và -1/2
A=(1+1999/1).(1+1992/2).(1+1999/3)...(1+1999/1000)/(1+1000/1).(1+1000/2).(1+1000/3)...(1+1000/1999)
Tính A
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)
Tính a, (1000-1^3)×(1000-2^3)×..... ×(1000-50^3)
b,2008^[(1×9×4×6)×(1×9×4×7)×.....×(1×9×9×9)]
CHO MÌNH CÁCH LÀM NHA
Tinh nhanh
a,A=2018^(1*9*4*6)*(9*4*7)***(1*9*9*9)
b,B=(1000—1^3)*(1000—2^3)*(1000—3^3)***(1000—50^3)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
tính B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1*2+/-1/3*4+-1/5*6+...+-1/999*1000)
\(\left(1000-1^{ }3\right).\left(1000-2^{ }3\right).\left(1000-3^{ }3\right)....\left(1000-25^{ }3\right)\)
\(^{\left(-1\right)^2.\left(-1\right)^{ }3.\left(-1\right)^{ }4.......\left(-1\right)^{ }100}\)
tính G=\(\frac{\left(1+\frac{1015}{1}\right)\left(1+\frac{1015}{2}\right)\left(1+\frac{1015}{3}\right)...\left(1+\frac{1015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1015}\right)}\)