Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(\Leftrightarrow\)\(2A=1-\frac{1}{3^8}\)
\(\Leftrightarrow\)\(2A=\frac{3^8-1}{3^8}\)
\(\Leftrightarrow\)\(A=\frac{3^8-1}{3^8}:2\)
\(\Leftrightarrow\)\(A=\frac{3^8-1}{3^8}.\frac{1}{2}\)
\(\Leftrightarrow\)\(A=\frac{3^8-1}{2.3^8}\)
b) Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^8}\)
\(\Rightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^7}\)
\(\Rightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\right)\)
\(\Rightarrow\)\(2A=1-\frac{1}{3^8}\)
\(\Rightarrow\)\(A=\frac{1-\frac{1}{3^8}}{2}\)