C = 1 4 4 3.7 + 4 7.11 + 4 11.15 + 4 15.19 + 4 19.23 + 4 23.27 = 2 27
C = 1 4 4 3.7 + 4 7.11 + 4 11.15 + 4 15.19 + 4 19.23 + 4 23.27 = 2 27
Tính hợp lí:
a) A = \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\) + \(\dfrac{1}{156}\) ;
b) B = \(\dfrac{4}{21}\) + \(\dfrac{4}{77}\) + \(\dfrac{4}{165}\) + \(\dfrac{4}{285}\) +\(\dfrac{4}{437}\) +\(\dfrac{4}{621}\);
c) C = \(\dfrac{1}{21}\) + \(\dfrac{1}{77}\) +\(\dfrac{1}{165}\) +\(\dfrac{1}{285}\) +\(\dfrac{1}{437}\) +\(\dfrac{1}{621}\) ;
d) D = \(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\) +\(\dfrac{1}{11.16}\) +\(\dfrac{1}{16.21}\) +\(\dfrac{1}{26.31}\) .
Tính A biết :\(A=\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{1}{285}+\frac{1}{437}\)
\(D=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+\frac{4}{285}+\frac{4}{437}+\frac{4}{621}\)
Tính nhanh:
A=10 - 1/72 - 1/50 - 1/42- .... - 1/6 - 1/2
Tìm x:
a.(x+1) + (x+1/3) +(x+1/6) +...+(x+1/55)= 130/11
b. 2/3.x - 780/11 :(13/15 +13/3535+13/63+1313/9999) +5=0
c. 2012/77 +20112/165 +2012/258 +2012/437=16/161 .x
Cảm ơn nhiều!!!!!!!!!!!
tính giá trị biểu thức
\(A=\frac{-378.132+189.64}{15+18+21+......+45+48}\)
\(B=1,4.\frac{15}{14}-\left(\frac{4}{5}+\frac{2}{5}\right):2\frac{1}{5}-\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{\frac{25}{24}+\frac{15}{180}+\frac{20}{285}}\)
\(C=\frac{7+\frac{7}{12}-\frac{7}{144}+\frac{7}{60}}{5+\frac{6}{12}-\frac{5}{144}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{34}}-\frac{1}{20}\)
Bài 1:Thực hiện phép tính sau:
(4/77+4/165+4/285):(5/84+3/180+4/285)
Bài 2:Tìm x:
(x+2/3).-3/5+4/7-11/7x
Tìm n thuộc N*, biết rằng 1/21 + 1/77 + 1/165 + ... + 1/n^2+4n = 56/673
- Tìm n thuộc N* biết rằng: 1/21 + 1/77 + 1/165 +...+ 1/n^2+4n = 56/673
tìm n thuộc N* biết rằng 1/21+1/77+1/165+...+1/n^2+4n=56/673
Tính giá trị biểu thức
\(A=\frac{-378.132+189.64}{15+18+21+...+45+48}\)
\(B=1,4.\frac{15}{14}-\left(\frac{4}{5}+\frac{2}{5}\right):2\frac{1}{5}-\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{\frac{25}{24}+\frac{15}{180}+\frac{20}{285}}\)