C=\(x\)\(\left[x^2-y\right]\)x\(\left[x^3-2y^2\right]\)x\(\left[x^4-3y^3\right]\)x\(\left[x^5-4y^4\right]\)tại \(x=2,y=-2\)
D=\(x^2\left[x+y\right]\)-\(y^2\)\(\left[x+y\right]\)+\(\left[x^2-y^2\right]\)+2\(\left[x+y\right]\)+3 biết rằng x+y+1=0
M=\(\left[x+y\right]\)x\(\left[y+z\right]\)x\(\left[x+z\right]\)biết ranhwfx+y+z=xyz=2
Tính nhanh:
\(A=\left(x^2-1\right)\left(2+x\right)-\left(x-2\right)\left(4+2x+x^2\right)-x\left(2x+1\right)\) với \(x=1003\)
\(B=x^2+4xy+4y^2+\left(x-2y\right)^2-2\left(x-2y\right)\left(x+2y\right)\) với \(x=2020;y=\frac{1}{4}\)
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
tìm x và y
a) \(\left(x-1\right)^2+\left(y+3\right)^2=0\)
b) \(2\left(x-5\right)^4+5\left|2y-7\right|^5=0\)
c) \(3\left(x-2y\right)^{2004}+4\left|y+\frac{1}{2}\right|=0\)
d) \(\left|x+3y-1\right|+\left(2y-\frac{1}{2}\right)^{2000}=0\)
Tính giá trị biểu thức
\(C=\frac{x^2\left(x^2+2y\right)\left(x^2-2y\right)\left(x^4+2y^4\right)\left(x^8+2y^8\right)}{x^{16}+y^{16}}\) với x=4,y=8
1Tìm \(\frac{a}{b}\) biet \(\frac{a+50}{b-112}\)
2 cho x-y-z=0 tính \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)
3 tìm x;y \(\frac{2x-4}{3y-5}=\frac{4}{5}\left(y>0\right)\)
4 tìm m để \(\frac{2m+9}{14m+62}\) tối giản
5 tìm A=x+2y+3z biết \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(P=\left(xy\right)+\left(x^2y^2\right)-\left(x^4y^4\right)+\left(x^6y^6\right)-\left(x^8y^8\right)\)
Tính giá trị của P tại x=-1 và y=-1
Bài 2: Tìm x, y biết :
a) \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)
b) \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)
Tính giá trị biểu thức
a)A=5a-b
\(A=5a-b/3a-2b \) với \(\frac{a}{b}=\frac{5}{7}\)
\(B=\frac{3x-5}{2x-y}-\frac{4y+5}{x+3y}\)với x-y=5 và x khác -3y và y khác -2x
\(c=x\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)biết x+y+1=0
Cho xyz=2, x+y+z=0 tính D=(x+y)(y+z)(z+x)
\(E=\frac{x^3+6x+4}{x+2}\)với \(^{x^2-x=0}\)