Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bình Bình

Tính giá trị:

\(P=\sqrt{1+1999^2+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

Mr Lazy
14 tháng 7 2015 lúc 17:06

Với số nguyên dương n, ta có: 

\(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}=\frac{n^2+2n+1+n^2+n^2\left(n+1\right)^2}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{\left(n+1\right)^2}=\frac{\left[n\left(n+1\right)+1\right]^2}{\left(n+1\right)^2}=\left(\frac{n^2+n+1}{n+1}\right)^2\)

\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

\(\Rightarrow P=\left(1999+\frac{1}{2000}\right)+\frac{1999}{2000}=1999+1=2000\)

 

Phùng Minh Quân
5 tháng 12 2018 lúc 20:55

Cách ez hđt lp 8 nhé 

\(P=\sqrt{\left(1+2.1999+1999^2\right)-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

\(P=\sqrt{\left(1+1999\right)^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

\(P=\sqrt{2000^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)

\(P=\sqrt{\left(2000-\frac{1999}{2000}\right)^2}+\frac{1999}{2000}\)

\(P=\left|2000-\frac{1999}{2000}\right|+\frac{1999}{2000}=2000-\frac{1999}{2000}+\frac{1999}{2000}=2000\)

... 


Các câu hỏi tương tự
Vu Dang Toan
Xem chi tiết
Dương Phạm Tùng
Xem chi tiết
nguyễn văn thái
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
Đào Thu Hoà
Xem chi tiết
Đào Thu Hoà
Xem chi tiết