Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\Rightarrow x=2y\)
=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\Rightarrow x=2y\)
=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Tính giá trị của biểu thức :\(A=\frac{x-y}{x+y}\)biết x2-2y2=xy và y khác 0, x+y khác 0.
Tính giá trị của biểu thức :
\(A=\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\) ( y khác 0 , x+y khác 0 )
cho các phân thức
A= \(\frac{x^2+x-2}{x^2-4}\); B= \(\frac{x^2-y^2}{x^3-y^3}\)
C=\(\frac{x-y}{x^2+y^2+4x-2y+5}\)
tìm giá trị của x,y để
a, giá trị của mỗi phân thức trên xác định
b,giá trị của mỗi phân thức trên bằng 0
Tính giá trị biểu thức P = x-y / x+y. Biết x^2 - 2y^2 = xy ( x+y khác 0 , y khác 0)
Cho x;y là các số nguyên thỏa mãn x2 - 2y = xy và y khác 0, x+y khác 0. Khi đó giá trị lớn nhất của biểu thức \(Q=\frac{x-y}{x+y}\)bằng:
A.Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
B. Co x,y là các số thực khác 0 tỏa mãn: x2-2xy+2y2-2x-2y+5=0. Tính giá trị của biểu thức P=\(\frac{xy+x+y+13}{4xy}=0\)
Tính giá trị của phân thức A = x - y x + y biết x 2 - 2 y 2 = x y (y ≠ 0; x + y ≠ 0)
Tìm nghiệm nguyên của phương trình x2+2y2+3xy-x-y+3=0
tinh giá trị biểu thức P=x-y/x+y biết x2-2y^2=xy(x+y khác 0 y khác 0)
Cho phân thức :\(B=\frac{xy^2+y^2\left(y^2-x\right)+2}{x^2y^4+y^4+2x^2+2}\)
a) Chứng minh B > 0 với mọi x,y
b) Tìm các giá trị của biến để B đạt giá trị lớn nhất