Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
Rút gọn rồi tính giá trị của biểu thức tại \(x=\frac{1}{2};y=\frac{1}{3}\)
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
Chứng minh rằng giá trị của A luôn không âm với mọi x,y khác 0
\(A=\left(7x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
1. Giá trị của \(x^2+y^2\)biết \(x+y=2\)và \(x-y=\frac{3\sqrt{2}}{2}\)
2. Giá trị của \(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\) biết \(xy=\frac{1}{2}\)
3.Giá trị của biểu thức \(x\left(2x+y\right)+xy+\frac{1}{2}y^2\)biết \(8x^3+12x^2y+6xy^2+y^3=27\)
4. Giá trị của biểu thức \(3x^2-12xy+12y^2\) biết \(x^3-6x^2y+12xy^2-8y^3=-8\)
Các bạn giải giúp mk với nha. Thanks!!!<3
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
CMR: giá trị biểu thức A luôn không âm với mọi x,y khác 0
\(A=\left(75x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)