P= \(\frac{1}{3}\)+\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+......+\frac{1}{1275}\)
Ta nhân tất cả phân số với 2/2 và không rút gọn
P = \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}\)\(+\)\(......+\frac{2}{2550}\)
Ta có công thức:
\(\frac{a}{b.c}=\frac{a}{c-b}.\left[\frac{1}{b}-\frac{1}{c}\right]\)
=> P = \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)
P = \(2.\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{50}-\frac{1}{51}\right]\)
\(P=2.\left[\frac{1}{2}-\frac{1}{51}\right]\)
\(P=2.\frac{49}{102}\)\(=\frac{49}{51}\)
Đó là cách làm của tớ, có gì không hiểu rạng sáng ngày 18 tháng 3 hỏi nhé!