\(B=x^6-20x^5-20x^4-20x^3-2x^2-20x+3\)
\(B=x^6-21x^5+x^5-21x^4+x^4-21x^3+x^3-21x^2+19x^2-20x+3\)
\(B=x^5\left(x-21\right)+x^4\left(x-21\right)+x^3\left(x-21\right)+x^2\left(x-21\right)+19x^2-20x+3\)
Do \(x=21\) nên \(\left(x-21\right)\left(x^5+x^4+x^3+x^2\right)=0\)
=> \(B=19.21^2-20.21+3=7962\)
VẬY \(B=7962\)