Ta có: \(x+y=1\)
\(\Rightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2+2xy=1\)
\(\Leftrightarrow x^2+y^2=1-2xy\left(1\right)\)
Lại có \(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\)(vì x+y=1)
\(\Leftrightarrow x^3+y^3=1-3xy\left(2\right)\)
Thay (1) và (2) vào biểu thức A ta được:
\(A=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy\)
\(=-1\)