Cho \(x=\sqrt[3]{8-2\sqrt{14}}+\sqrt[3]{8+2\sqrt{14}}-1\). Tính giá trị biểu thức
\(Q=\left(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\right)\)
Cho x = \(\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính giá trị biểu thức:
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-2\sqrt{x}}{\sqrt{2x^2}+2x}\right)^{2017}\) tại giá trị x đã cho
a) Cho x = \(\frac{\sqrt[3]{10+6\sqrt{3}}\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)Tính giá trị biểu thức: A = \(\left(x^3-4x+1\right)^{2018}\)
b) Cho x = \(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7+5\sqrt{2}}}\)Tính giá trị biểu thức: B = \(\left(x^3+3x-14\right)^{2018}\)
tính giá trị của \(Q=\frac{4\left(x+1\right)x^{2019}-2x^{2018}+2x+1}{2x^2+3x}\) tại x=\(\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\)
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\).
Tính giá trị phương trình: \(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2017}\)
tại giá trị của x.
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) Tính giá trị BT
\(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)\)tại giá trị x
Cho x = \(\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\left(\sqrt{3}+1\right)}}\) . Tính giá trị của biểu thức:
A = \(\frac{4\left(x+1\right)x^{2003}-2x^{2012}+2x+1}{2x^2+3x}\)
Tính giá trị biểu thức của \(A=\left(x^5+x^4-x^3+1\right)^{2018}+\frac{\left(x^2+x-3\right)^{2018}}{x^5+x^4-x^3-2^{2018}}...\)Khi\(x=\frac{\sqrt{5}-1}{2}\)