Ta có: \(9x^2+4y^2=20xy\Leftrightarrow9x^2-12xy+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\) (1)
Mặt khác: \(9x^2+4y^2=20xy\Leftrightarrow9x^2+12xy+4y^2=32xy\Leftrightarrow\left(3x+2y\right)^2=32xy\) (2)
Từ (1) và (2) => \(\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=\pm\frac{1}{2}\)
Mà \(2y< 3x< 0\Rightarrow A=\frac{3x-2y}{3x+2y}=\frac{-1}{2}\)