a: \(=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
b: \(=\sqrt{2}+1-5+\sqrt{2}=2\sqrt{2}-4\)
c: \(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
a: \(=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
b: \(=\sqrt{2}+1-5+\sqrt{2}=2\sqrt{2}-4\)
c: \(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
Tính:
1.\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\) 4.\(\sqrt{\left(\sqrt{3}\right)^2+2.\left(\sqrt{3}\right).\left(1\right)+\left(1\right)^2}\)
2.\(\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}\) 5.\(\sqrt{\left(\sqrt{5}\right)^2+2.\left(\sqrt{5}\right).\left(\sqrt{3}\right)+\left(\sqrt{3}\right)^2}\)
3.\(\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\) 6.\(\sqrt{\left(\sqrt{6}\right)^2-2.\left(\sqrt{6}\right).\left(\sqrt{5}\right)+\left(\sqrt{5}\right)^2}\)
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
Rút gọn :
a) \(\left(\sqrt{6}+\sqrt{2}\right).\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)\)
b) \(\sqrt{2}.\left(\sqrt{2-\sqrt{3}}\right).\left(\sqrt{3}+1\right)\)
c) \(\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
d)\(\left(\sqrt{3}-\sqrt{12}\right).\left(\sqrt{5+2\sqrt{6}}\right)\)
e) \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
f) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
Tính giá trị biểu thức:
\(\sqrt{\left(2-\sqrt{5}\right)^2}\) + \(\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
Bài 1 :Chứng minh các đẳng thức :
a ) \(2\sqrt{2}\left(\sqrt{3}-2\right)\) + \(\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b ) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c ) \(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}=6\)
Bài 2 : Rút gọn các biểu thức sau :
a ) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
b ) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
Bài 3 : Rút gọn các biểu thức sau :
a ) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b ) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c ) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d ) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right):\frac{1}{8}\)
Thực hiện phép tính
a) \(\left(4+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b) \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
c) \(\frac{\sqrt{\sqrt{5+2}}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+2}}-\sqrt{3-2\sqrt{2}}\)
a) \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
b)\(\sqrt{\left(\sqrt{2-3}\right)^2}.\sqrt{11+6\sqrt{2}}\)
c) \(\sqrt{\left(\sqrt{3-3}\right)^2.}\sqrt{\frac{1}{3-\sqrt{3}}}\)
d)\(\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
Rút gọn biểu thức
a)\(\sqrt{26+15\sqrt{3}}\).
b)\(\sqrt{2-\sqrt{3}}\)
c)\(\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+5}\right)\)
d)\(\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
1)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
2)\(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)
3)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
1.\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
2.\(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
3. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
4.\(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
5.\(2.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
6.\(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
7.\(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)