Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bảo Vy

tính giá trị biểu thức

A =\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

B = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{n.\left(n+1\right)}\)(n\(\in\)Z, n\(\ne\)0; n\(\ne\)-1)

Thanh Tùng DZ
11 tháng 5 2020 lúc 13:52

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

Khách vãng lai đã xóa

ui cí này e chưa học

Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
11 tháng 5 2020 lúc 14:26

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}\)

\(=\frac{5}{6}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
11 tháng 5 2020 lúc 14:43

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=\frac{1}{1}-\frac{1}{6}\)

\(A=\frac{5}{6}\)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=\frac{1}{1}-\frac{1}{n+1}\)

\(B=\frac{n+1}{n+1}-\frac{1}{n+1}\)

\(B=\frac{n}{n+1}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Thị Ngọc Huyền
Xem chi tiết
nguyễn thị oanh
Xem chi tiết
nguyễn trần thu hằng
Xem chi tiết
Tạ Thùy Dương
Xem chi tiết
Minfire
Xem chi tiết
trang trân huyên
Xem chi tiết
Nguyễn Hà Vi 47
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
Xem chi tiết