\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)........\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}.\frac{4}{3}.............\frac{100}{99}=\frac{3.4....................100}{2.3.................99}=\frac{\left(3.4.......99\right).100}{2.\left(3.4...........99\right)}=\frac{100}{2}=50\)
Vậy A=50
A=\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right)..............\left(\frac{1}{99}+1\right)\)
=\(\frac{3}{2}.\frac{4}{3}.............\frac{100}{99}\)
=\(\frac{100}{2}\)=50
\(\Rightarrow A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.......\frac{100}{99}\)
\(\Rightarrow A=\frac{3.4.5.6........100}{2.3.4.........99}\)
\(\Rightarrow A=\frac{100}{2}=50\)
A = 3/2.4/3.5/4...100/99
A = 3.4.5.6....100/2.3.4.5....99
A = 100/2
A = 50
\(A=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}\)
\(A=\frac{3.4....100}{2.3...99}\)
\(A=\frac{100}{2}=50\)