Tính giá trị của biểu thức :\(A=\frac{x-y}{x+y}\)biết x2-2y2=xy và y khác 0, x+y khác 0.
Tính giá trị của biểu thức :
\(A=\frac{x-y}{x+y}\) biết \(x^2-2y^2=xy\) ( y khác 0 , x+y khác 0 )
Tính giá trị biểu thức P= x-y/x+y . Biết x2 _ 2y2 = xy ( x+y khác 0 , y khác 0 )
Tìm nghiệm nguyên của phương trình x2+2y2+3xy-x-y+3=0
tinh giá trị biểu thức P=x-y/x+y biết x2-2y^2=xy(x+y khác 0 y khác 0)
Cho biểu thức: P = 2/x - (x^2/x^2+xy + y^2-x^2/xy - y^2/xy+y^2).x+y/x^2+xy+y^2 với x khác 0, y khác 0, x khác -y
1) Rút gọn biểu thức P.
2) Tính giá trị của biểu thức P, biết x, y thỏa mãn đẳng thức:
x^2+y^2+10=2(x-3y)
Tính giá trị biểu thức P= x-y/x+y . Biết x2 _ 2y2 = xy ( x+y khác 0 , y khác 0 )
A.Giải phương trình nghiệm nguyên: x2+xy-2x+1=x+y
B. Co x,y là các số thực khác 0 tỏa mãn: x2-2xy+2y2-2x-2y+5=0. Tính giá trị của biểu thức P=\(\frac{xy+x+y+13}{4xy}=0\)
Chi x y z khác 0 thỏa mãn
1/x+1/y+1/z=2 và 1/xy+1/z^2=4
Tính giá trị biểu thức A=(x+2y-z)_2017
Cho x;y là các số nguyên thỏa mãn x2 - 2y = xy và y khác 0, x+y khác 0. Khi đó giá trị lớn nhất của biểu thức \(Q=\frac{x-y}{x+y}\)bằng: