Đặt \(D=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow D^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(\Leftrightarrow D^2=8+2\sqrt{16-10-2\sqrt{5}}\)
\(\Leftrightarrow D^2=8+2\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow D^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow D^2=8+2\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow D^2=6+2\sqrt{5}\)
\(\Leftrightarrow D^2=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow D=\sqrt{5}+1\)
Thay vào ta tính được: \(A=\sqrt{5}+1-\sqrt{5}=1\)
Vậy A = 1