Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
inteligent

tính giá trị biểu thức A\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
16 tháng 5 2015 lúc 8:59

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

 \(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)

\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)

\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)


Các câu hỏi tương tự
lê chí dũng
Xem chi tiết
boy
Xem chi tiết
Nguyễn Chí Nhân
Xem chi tiết
❤Firei_Star❤
Xem chi tiết
Nguyễn Thị Ánh Tuyết _29...
Xem chi tiết
Mai Hiệp Đức
Xem chi tiết
Bạch mã hoàng tử
Xem chi tiết
Dương Đình Hưởng
Xem chi tiết
nguyenthibichhang
Xem chi tiết