=>3A=3^2+3^3+3^4+3^5+.....+3^101
=>3A-A=3^101-3
=>2A=3^101-3
=>A=3^101-3/2
vậy A=3^101-3/2
3A=32+33+34+35+...........+3101
=>3A-A=3101-3
=>2A=3101-3
=>A=\(\frac{3^{101}-3}{2}\)
3A=3^2+3^3+3^4+....+3^100+3^101
3A-A=(3^2+3^3+3^4+....+3^100+3^101)-(3+3^2+3^3+3^4+...+3^100)
2A=3^101-3
A=(3^101/2)-(3/2)
=> 3A = 3. ( 3 + 32 + 33 + 34 + .... + 3100 )
=> 3A = 32 + 33 + 34 + 35 + .... + 3101
=> 3A - A = ( 32 + 33 + 34 + 35 + .... + 3101 ) - ( 3 + 32 + 33 + 34 + .... + 3100 )
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
A=3+32+33+34+...+3100
3A=32+33+34+35+...+3101
3A-A=3101-3
2A=3101-3
A=(3101-3) : 3
3A= 3^2 + 3^2 + 3^3 + 3^4 +...........+ 3^101
3A-A=(3^2 + 3^2 + 3^3 + 3^4 +.......+ 3^101) - ( 3 + 3^2 + 3^3+ 3^4+................+3^100)
2A=3^2 +3^101-3
2A=3^103 - 3
A= \(\frac{3^{103}-3}{2}\)
102 - 1 = 101