\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
A=\(\frac{1}{1x2}+\frac{1}{2x3}+.......+\frac{1}{99x100}\)
A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}\)
A=\(1-\frac{1}{100}\)
A= \(\frac{99}{100}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)