Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hoài Duyên

Tính \(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^2}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

kudo shinichi
24 tháng 12 2018 lúc 16:55

Sửa đề:

\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{\left(a-b\right)\left(a+b\right)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a\left(a^2-b^2+a^2+b^2\right)}{\left(a^2-b^2\right)\left(a^2+b^2\right)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a.2a^2}{\left(a^2-b^2\right)\left(a^2+b^2\right)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3\left(a^4+b^4+a^4-b^4\right)}{a^4-b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3.2a^4}{\left(a^4+b^4\right)\left(a^4-b^4\right)}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7\left(a^8+b^8+a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)