Bạn đặt biểu thức trên là A rồi tính 3A sau đó lấy 3A - A thành 2A chia 2 là được
Bạn đặt biểu thức trên là A rồi tính 3A sau đó lấy 3A - A thành 2A chia 2 là được
Tính tổng: \(A=\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+\frac{1}{4.\left(1+2+3+4\right)}+...+\frac{1}{2013.\left(1+2+3+...+2013\right)}\)
Tính giá trị của biểu thức
A=\(\left(99-\frac{3^1}{2}\right).\left(189-\frac{3^2}{3}\right).\left(279-\frac{3^3}{4}\right).....\left(181089-\frac{3^{2012}}{2013}\right).\left(181179-\frac{3^{2013}}{2014}\right)\)
Kết quả phép tính:\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
Kết qủa của phép tính: \(\left(-2\right).\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2012}\right).\left(-1\frac{1}{2013}\right)\)
Tính nhanh: A = \(\left(-2\right).\left(1\frac{1}{2}\right). \left(1\frac{1}{3}\right).\left(1\frac{1}{4}\right)....\left(1\frac{1}{2013}\right)\)
Kết quả của phép tính: \(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)...\left(-1\frac{1}{2013}\right)\) là ?
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
B=\(\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+....+\left(\frac{1}{3}\right)^{2013}.\)vậy số tự nhiên n thỏa mãn biết\(1-2B=\left(\frac{1}{3}\right)^n\)